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Abstract

Purpose – The purpose of this paper is to study numerically the effects of heat transfer on the
strength of shock waves emitted upon spherical bubble collapse.
Design/methodology/approach – The motion of bubble under ultrasound is predicted by solutions
of the Navier-Stokes equations for the gas inside a spherical bubble. The Gilmore model and the method
of characteristics are used to model the shock wave emitted at the end of the bubble collapse.
Findings – The theory permits one to predict correctly the bubble radius-time curve and the
characteristics of shock wave in sulphuric acid solution. These simulations indicated that the heat
transfer inside the bubble and the liquid layer plays a major role in the bubble behaviour and the
strength of the shock waves. Also, the developed numerical scheme is checked for different gas bubble
like air, Argon and Xenon. It is observed that the gas thermal conductivity plays an important role in
the shock wave strength. A good agreement is observed by comparison of the results with the
experimental data.
Originality/value – The effect of heat transfer on the emitted shock wave strength has not been
studied previously. In this paper, a numerical scheme is developed to consider heat transfer on the
shock. Also, this simulation is checked for different gas conductivities.
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Nomenclature

C speed of sound at the interface
between the gas – filled bubble and
the liquid, m/s

c speed of sound in the bulk liquid, m/s

Cv heat capacity at constant volume,
J/kg K

Cp heat capacity at constant pressure,
J/kg K

e internal energy per mass, J/kg

f frequency of driving pressure, Hz

h enthalpy in the bulk liquid, J/kg

H liquid enthalpy at the interface
between the gas – filled bubble and
the liquid, J/kg

kg gas heat conductivity, W/mK

kl liquid heat conductivity, 0:4 W=mK

m gas mass inside a bubble, kg

p pressure in the liquid, pa

P pressure at the bubble interface, pa

pb pressure inside the bubble, pa

Pb� pressure at bubble centre, pa

Pe driving pressure amplitude, pa

q heat transfer conducted through the
gas, W

R bubble radius, m

r radial distance to the bubble centre, m

R� initial bubble radius, m
_RR bubble wall velocity, m/s
€RR bubble wall acceleration, m/s2

t time, s

Tb temperature inside the bubble, K

Tbl temperature at bubble-liquid
interface, K
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Tb� temperature at the bubble centre, K

T1 Liquid temperature far from the
bubble, K

u(t) velocity in the liquid, m/s

ug radial velocity profile inside the
bubble, m/s

Greek symbols

� specific heat ratio

� surface tension of the liquid,
0:055 N=m

� dynamic viscosity of the liquid,
0:025 Ns=m2

� liquid density, kg=m3

�� ambient liquid density, 1;800 kg=m3

Subscripts

b bubble

l liquid

bl bubble liquid interface

1 ambient liquid medium

1. Introduction
In an acoustic field, matter is alternately subjected to pressure and tension. In the
tension phase, a liquid rupture to form cavities or bubbles in the liquid that finally
close when the tension is released for longer time. The pressure in liquid increases to a
positive value in the pressure phase. As a consequence, the bubble decreases in size
violently, overshooting its equilibrium size and bouncing back (whenever it does not
break). This process is usually referred to as the collapse and rebound of the bubble.
The velocity and pressure fields in the liquid are caused by the shock waves
originating from the rapidly rebounding bubble wall.

The equations of motion governing these effects were started by Lord Rayleigh
in the 19th century (Hilgenfeldt et al., 1998). The formalism was substantially refined
and developed by Plesset, Prosperetti, and others over a span of several decades.
Usually, the Rayleigh-Plesset equation for the bubble wall motion and the polytropic
relation for the gas behaviour inside the bubble under ultrasound have been employed.
If the heat transfer is fast (relative to the time scale of the bubble motion), then the gas
in the bubble is maintained at the temperature of the liquid, and the pressure is
determined by an isothermal equation of state. On the other hand, if the bubble wall
moves very quickly relative to the time scale of heat transfer, then heat will not be able
to escape from the bubble, and the bubble will heat adiabatically on collapse. If the rate
of heat transfer is intermediate between adiabatic and isothermal, the situation is more
complicated. Hence, a correct calculation requires solving the heat conduction problem
throughout the bubble cycle and using the computed temperature in the bubble to
evaluate the pressure in the gas. This is quite a difficult task. Over the years, several
methods have been proposed that amount to varying polytropic index continuously
between the isothermal value and the adiabatic value (Plesset and Prosperetti, 1997;
Prosperetti, 1977; Kamath et al., 1993). This approach can yield quantitatively incorrect
results in large part because energy dissipation from thermal processes is neglected
(Prosperetti and Hao, 1999). Wu and Robert (1993) and Moss et al. (1994) tried to solve
numerically the total energy equation without considering the heat transfer inside the
bubble and the liquid layer at the bubble wall. However, their calculation overestimated
the gas temperature in the bubble. Prosperetti (1977) solved the internal energy
equation combined with the mass and momentum equation numerically to consider
heat transport inside the bubble. However, heat transfer through the liquid layer was
not considered in their study. While Kwak and Na (1996) considered the quadratic



HFF
20,4

374

temperature distribution in the liquid layer adjacent to the bubble wall and provided a
time-dependent first-order equation thermal boundary layer thickness.

In many practical bubble-collapse situations, however, it appears that local
velocities reach an appreciable fraction of the velocity of sound in the liquid, and the
compressibility of the liquid cannot safely be neglected. Early work on collapse focused
on the inclusion of liquid compressibility in order to learn more about the production of
shock waves. Herring (1941) derived the first-order correction of the ratio of liquid
velocity to sonic velocity. Later, Schneider (1949) treated the same, highly idealized
problem by numerically solving the equations of compressible flow. Gilmore (1956)
showed that one could use the approximation introduced by Kirkwood and Bethe
(1942), which assume that in the final stage of collapse the inertial motion prevails
upon the acoustic effect, to obtain analytic solutions.

From an experimental viewpoint, the dynamics of spherical, isolated bubbles driven
by an acoustic wave have been measured using light scattering methods (Weninger
et al., 2001). However, the main direct experimental observations of bubble collapse
near a solid surface have been obtained upon laser-induced cavitation (Philipp and
Lauterborn, 1998). The strength of the cavitation shocks and their range of action have
been studied in detail by Hickling and Plesset (1964). Hickling and Plesset were the
first to make use of numerical solutions of the compressible flow equations to explore
the formation of pressure waves or shocks during the rebound phase. Other numerical
calculations have since been carried out by Ivany and Hammitt (1965), Tomita and
Shima (1977), and Fujikawa and Akamatsu (1980), among others. Ivany and Hammitt
confirmed that neither surface tension nor viscosity play a significant role in the
problem. Recently, Minsier and Proost (2007) showed the importance of equation of
state on the shock wave velocity emitted upon bubble collapse.

In this paper, shock wave emission resulting from spherical bubble collapse is
modelled in sulphuric acid. A set of the Navier-Stokes equations for the gas inside a
spherical bubble with considering heat transfer through the gas inside the bubble and the
liquid layer is solved. It shows that the polytropic relation with conjunction the Gilmor
equation provides considerable overestimation of the peak pressure and underestimation
of the peak temperature for an ultrasonic gas bubble. The outward-travelling shock wave
strength and velocity is compared with polytropic state and present model. The most of
previous studies are not considered the heat transfer inside the gas bubble. This
investigation shows that this effect is very important and should be considered.

2. Hydrodynamic bubble motion
Consider a spherical bubble of radius, R(t) (where t is time), in an infinite domain of
liquid (85 per cent sulphuric acid solution) whose temperature and pressure far from
the bubble are T1 and P1ðtÞ, respectively. A sketch of the bubble model used is
given in Figure 1. The temperature, T1, is assumed to be simple constant since
temperature gradients were eliminated and uniform heating of the liquid due to
internal heat sources or radiation will not be considered. On the other hand, the
pressure, P1ðtÞ ¼ P� þ Pe sinð2�ftÞ, is assumed to be a known controlled input
which regulates the growth or collapse of the bubble. Pe and f are the driving
pressure amplitude and frequency respectively and P� ¼ 1 bar is ambient pressure.
Mass transfer through the bubble interface and evaporation or condensation of liquid
molecules near the interface was not considered in this analysis. Heat transfer was
assumed to occur through the thermal boundary layer having thickness of �ðtÞ.
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The Gilmore equation describes the behaviour of a spherical bubble within a static,
compressible and inviscid liquid subjected to a sinusoidal wave. As no gravity or
other asymmetrical perturbating effects are considered, the equation describing the
evolution of bubble radius as a function of time is (Gilmore, 1956):

R€RR 1� R

C

� �
þ 3

2
_RR2 1� R

3C

� �
¼ H 1þ

_RR

C

 !
þ R _HH

C
1�

_RR

C

 !
; ð1Þ

where C and H are, respectively, the speed of sound and the liquid enthalpy at the
interface between the gas-filled bubble and the liquid. The dots in Equation (1) refer to
first- and second-order time derivation. To solve this ordinary differential equation,
expressions for the enthalpy h and the speed of sound c in the bulk liquid are required
as well. As the liquid is isentropic, h and c can be expressed as function of pressure p
and density � in the liquid as follows:

h ¼
ðp

P1

dp

�
; c ¼

ffiffiffiffiffi
dp

d�

s
: ð2Þ

In deriving the above equations, it was assumed that the density of the liquid was a
function of pressure only. Tait’s equation is appropriate to describe the state of the
liquid under these assumptions. The equation of state is given by:

pþ B

P� þ B
¼ �

��

� �A

; ð3Þ

where the subscript 0 defines the ambient condition. �� ¼ 1;800 kg=m3 is liquid
density. The constant coefficients B and A are considered 3,500 and 6.25 bar,
respectively, based on experimental NIST data for water pressure and density. The
local enthalpy, h, and sound velocity, c, in the liquid at the instant liquid pressure p can
be obtained by using the above equation of state in Equation (2) that is given by:

h ¼ 1

��

A

A� 1

� �
1

P� þ B

� ��1
A

ðpþ BÞ
A�1

A � ðP1 � BÞ
A�1

A

h i
: ð4Þ

Figure 1.
Physical model for
spherical bubble in

liquid medium
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c2 ¼ A

��
ðP� � BÞ

1
Aðpþ BÞ

A�1
A : ð5Þ

The enthalpy and the speed of sound in the liquid at the interface can be obtained by
using the pressure at the interface, P, in Equations (4) and (5) as follows:

H ¼ 1

��

A

A� 1

� �
1

P� þ B

� ��1
A

ðP þ BÞ
A�1

A � ðP1 � BÞ
A�1

A

h i
; ð6Þ

C2 ¼ A

��
ðP� � BÞ

1
AðP þ BÞ

A�1
A : ð7Þ

The pressure at the interface in the liquid expresses as (Brennen, 1995):

P ¼ Pb �
2�

R
þ 4�

_RR

R
; ð8Þ

where � ¼ 0.025 Ns/m2 and � ¼ 0.055 N/m are the surface tension and the dynamic
viscosity of the liquid respectively.

The rapidly collapsing bubble may emit shock waves from the bubble wall in the
outward direction. The dynamics of the pressure and velocity field in the liquid is
calculated by using the Kirkwood and Bethe (1942) hypothesis. According to this
assumption, the quantity Y, defined as Y ¼ rðhþ ðu2=2ÞÞ ¼ RðH þ ð1=2Þ _RR2Þ with r
being the radial distance to the bubble centre and u being the velocity in the liquid,
propagates in liquid with the velocity c þ u:

@Y

@t
¼ �ðcþ uÞ @Y

@r
: ð9Þ

This homogeneous equation is then solved by the method of characteristics. The basis
of this method is to calculate the velocity and the pressure field inside the liquid by
integration of their time derivatives along characteristic curves, starting from their
values at the bubble wall as obtained from the Gilmore model. The characteristic
curved for Equation (9) are defined as curved r(t) with a direction given by:

dr

dt
¼ cðrðtÞÞ þ uðrðtÞÞ; ð10Þ

where cðrðtÞÞ and uðrðtÞÞ are the speed of sound and the velocity in the liquid along the
characteristic curves. As these quantities vary along the characteristic curves, the
following expressions for their time derivatives along the characteristic curves are
used (Minsier and Proost, 2007):

du

dt
¼ 1

rðc� uÞ ðcþ uÞY
r

2uc2

� �
: ð11Þ
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dp

dt
¼ ��

rðc� uÞ
pþ B

P� þ B

� �1
A

2c2u2 � cðcþ uÞ
r

Y

� �
: ð12Þ

It is to be noted that the variables cðrðtÞÞ; uðrðtÞÞ, and pðrðtÞÞ are written as u, c, and p

in Equations (11) and (12).

3. Thermodynamic bubble motion
3.1 Analytical solutions for the gas inside a bubble

The mass conservation for the gas inside the bubble with spherical symmetry is

given as:

@�g

@t
þ 1

r2

@

@r
ð�gugr2Þ ¼ 0: ð13Þ

With decomposition of the density into centre and radial dependent parts such as:

�g ¼ �g� þ �gr: ð14Þ

The continuity equation becomes:

@�g�
@t
þ �g�

1

r2

@

@r
ðugr2Þ

� �
þ @�gr

@t
þ 1

r2

@

@r
ð�grugr2Þ

� �
¼ 0: ð15Þ

The radial velocity profile inside the bubble may be written as Equation (20):

ug ¼
3 _RR

R
r; ð16Þ

with the velocity profile, a set of solutions for the mass conservation equation may be
obtained. These are:

�g�R
3 ¼ const; ð17Þ

and

�gr ¼
ar2

R5
: ð18Þ

The constant a is related to the gas mass inside a bubble, m, by ða=mÞ ¼
ð5=4�Þ½1� ðPb�R

3
b=Tb�Þ=ðP 0�R3

�=T1Þ�, where P 0� ¼ P� þ 2�=R�. Pb� and Tb� are

pressure and temperature at bubble centre respectively.

The momentum equations for the gas inside the bubble with spherical symmetry
are given as:

@

@t
ð�gugÞ þ

1

r2

@

@r
ð�gu2

gr2Þ þ @Pb

@r
¼ 0: ð19Þ

The gas pressure inside the bubble Pb can be obtained from the momentum equation

with the density and velocity profile given in Equations (14) and (16), respectively.
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Pb ¼ Pb� �
1

2
�g� þ

1

2
�gr

� � €RR

R
r2 ð20Þ

Assuming that the internal energy for the gas inside a bubble is a function of gas
temperature only as de ¼ CvdTb, the energy equation for the gas inside the bubble may
be written as:

�gCv
DTb

Dt
¼ �Pb

r2

d

dr
ðr2ugÞ �

1

r2

d

dr
ðr2qrÞ: ð21Þ

Using the definition of enthalpy, the internal energy equation for the gas can also be
written as:

�gCP
DTb

Dt
¼ þDPb

Dt
� 1

r2

d

dr
ðr2qrÞ: ð22Þ

Eliminating D=Dtð¼ @=@t þ ug@=@rÞTb from Equations (21) and (22), one can obtain
the following heat flow rate equation for the gas pressure inside bubble:

DPb

Dt
¼ � �Pb

r2

@

@r
ðr2ugÞ �

� � 1

r2

@

@r
ðr2qrÞ; � ¼ Cp

Cv
; ð23Þ

by substitution of Equations (14), (16), and (20) in the Equation (23), it becomes:

� � 1

r2

@

@r
ðr2qrÞ ¼ �

dPb�
dt
þ 3�Pb�

_RR

R

" #
þ 1

2
�g� þ

1

2
�gr

� �
ð3� � 1Þ

_RR€RR

R2
þ R

...

R

" #
r2: ð24Þ

The temperature distribution due to the non-uniformity of the pressure distribution
which induced from abrupt increase and subsequent decrease in the bubble wall
acceleration near the collapse point was neglected in this study. In fact, the term in
Equation (20), which produced non-uniform pressure field is significant when the
bubble wall acceleration exceeds 1012 m/s2 (Kim et al., 2007). With the uniform pressure
approximation, Equation (24) can be written as:

ð� � 1Þ
r2

d

dr
ðr2q�Þ ¼ �

dPb�
dt
þ 3kPb�

_RR

R

" #
: ð25Þ

A temperature profile of the gas inside the bubble can be obtained by using the Fourier
law and Equation (25). That is (Kim et al., 2007):

TbðrÞ ¼
B�

A�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA�

B�
Tb�

� �2

� 2�
A�

B�
ðTbl �T1Þ

r

R

� �2

s2
4

3
5; ð26Þ

where A� and B� are the coefficients in the temperature – dependent gas conductivity
having a form such as kg ¼ A�T þ B� and � ¼ ðR=�Þðkl=B�Þ, where kl ¼ 0:4 W=mK is
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liquid conductivity. For Argon A� ¼ 2:685� 10�5 J=msK2 and B� ¼ 1:347�
10�3 J=msK, for Xenon A� ¼ 1:031� 10�5 J=msK2 and B� ¼ 3:916� 10�3 J=msK and
for air A� ¼ 5:528� 10�5 J=msK2 and B� ¼ 1:165� 10�2 J=msK.

The temperature at the bubble wall can easily be obtained from the Equation (26):

Tbl ¼
B�

A�
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A�

B�
Tb�

� �2

� 2�
A�

B�
ðTbl � T1Þ

s2
4

3
5: ð27Þ

At the bubble centre, the state equation for an ideal gas is Pb�R
3=Tb� ¼ const.

Therefore:

dTb�
dt
¼ Tb�

Pb�

dPb�
dt
þ 3Tb� _RR

R
: ð28Þ

The above equation can be written, with the help of Equation (25) as follows:

dTb�
dt
¼ �3ð� � 1ÞTb� _RR

R
� ð� � 1ÞTb�

Pb�

1

r2

d

dr
ðr2q�Þ: ð29Þ

The bubble centre temperature can be obtained by using the Fourier law and Equation
(28). That is:

dTb�
dt
¼ 3ð� � 1ÞTb�

R

dR

dt
� 6ð� � 1ÞklðTb� � T1Þ

�RPb�
: ð30Þ

The temperature distribution in the liquid layer adjacent to the bubble wall, which is
important to determine the heat transfer through the bubble wall, is assumed to be
quadratic (Theofanous, 1969), such as:

T � T1
Tbl � T1

¼ ð1� 	Þ2; 	 ¼ ðr � RÞ=�: ð31Þ

Such second-order curve satisfies the following boundary conditions:

TðR; tÞ ¼ Tbl ; TðR þ �; tÞ ¼ T1;
@T

@r

� �
r¼Rþd

¼ 0: ð32Þ

The energy conservation equation for liquid under the influence of bubble wall motion
is expressed by:

@T

@t
þ ur

@T

@r
¼ 
l

r2

@

@r
r2 @T

@r

� �
; ð33Þ

where 
l ¼ kl=��CP is the thermal diffusivity, and the radial velocity of liquid due to
bubble motion can be obtained from mass conservation for an incompressible liquid
r:ur ¼ 0. That is:
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ur ¼
R

r

� �
_RR: ð34Þ

Integrating Equation (33) from r ¼ R to r ¼ R þ � yields:

ðRþ�

R

r2 @T

@t
dr þ

ðRþ�

R

urr
2 @T

@r
dr ¼

ðRþ�

R


l

@

@r
r2 @T

@r

� �
dr; ð35Þ

with the temperature profile and boundary conditions given in Equations (31) and (32),
and the velocity profile in the liquid (Equation (34)), the above equation become (Ryu
and Kwak, 1992):

1þ �

Rb

þ 3

10

�

Rb

� �2
" #

d�

dt
¼ 6


�
� 2

�

Rb

þ 1

2

�

Rb

� �2
" #

dRb

dt

� � 1þ 1

2

�

Rb

þ 1

10

�

Rb

� �2
" #

1

Tbl � T1

dTbl

dt
:

ð36Þ

3.2 Polytropic approximation
In the previous research, usually the gas inside the bubble is assumed uniform. In all
gas state equations, the pressure is described as a function of density and the
temperature. The density can be calculated from the bubble volume and the initial gas
content of the bubble, as no mass exchange is considered between the bubble and the
liquid. However, temperature is unknown. This is done by assuming that the gas is
polytropic. A Vander Waals equation with polytropic exponent of � was employed to
obtain the gas pressure inside a uniformly compressed bubble:

Pb ¼ P� þ
2�

R

� �
R3
� � h3

R3 � h3

� ��
; ð37Þ

where h ¼ R�=8:5 is the hard-core Vander Waals radius and � is the polytropic index.
For calculating the temperature, the following relation with variable polytropic indexes
of �, which is related to the thermal diffusivity of gas and liquid and driving sound
frequency (Prosperetti, 1977), may be employed:

Tb

T1
¼ R3

� � h3

R3 � h3

� ���1

: ð38Þ

For a bubble under ultrasound frequency of kHz range the polytropic index needed to
calculated pressure and temperature is about 1.3 (Kim et al., 2007).

4. Results and discussion
The initial conditions of R ¼ R�; _RR ¼ 0;Pb ¼ P�;Tbl ¼ T1;Tb� ¼ T1, and � ¼ 5:0R�,
Equations (1), (6)-(8), (27), (30), and (36) are simultaneously solved by using the fourth
order Runge-Kutta numerical method to obtain the next time step values of
_RRb;Rb;Tb�;Tbl , and �. By calculated bubble centre density, �g�, from Equation (17),
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the gas pressure at the bubble centre can be obtained from the ideal gas law
Pb�=�g�Tb� ¼ const. This calculated was repeated up to the desired time step. In this
calculation, we let d�=dt ¼ 0 to avoid an infinite value of boundary layer thickness,
provided that the absolute value of jTbl � T1j < 0:5 �C.

The bubble radius and ambient (driving) pressure vs time is illustrated in Figure 2.
The bubble radius is calculated by this presented scheme and also by polytropic
assumption. The ambient pressure is P1 ¼ P� þ Pe sinð2�ftÞ, and Pe and f are the
driving pressure amplitude and frequency. The ultrasound frequency of 28.5 kHz and
amplitude of 1.42 bars in an aqueous solution of sulphuric acid is applied. The results
are compared with the experimental data obtained originally by Flannigan et al. (2006).
The initial (equilibrium) radius of this Argon bubble is R� ¼ 13mm. The bubble radius
increases by decreasing pressure. A time, lag between the occurrence of minimum
pressure and maximum bubble radius is observed. But, the bubble collapses before
reaching maximum pressure. The polytropic assumption suffers to predict maximum
radius. This assumption yields quantitatively incorrect results because the thermal
damping due to the finite heat transfer across the bubble wall cannot be taken into
account. The present numerical calculation well matches with the experimental data
for predicting maximum radius. Close agreement between the calculated result and
experimental can be seen.

The time-dependent thermal boundary layer thickness calculated from Equation (36)
around the collapse point is shown in Figure 3. The minimum value of boundary layer
thickness is �min ¼ 1.5mm that occurs in collapse point. Figure 4 shows the calculated
time-dependent temperatures at the bubble centre. The calculated gas temperature at the

Figure 2.
Theoretical and

experimental radius-time
curve for an argon bubble

of R� ¼ 13mm at
Pa ¼ 1:42 bar and

f ¼ 28.5 kHz
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maximum size of the bubble is about 290 K, which is the same as the one at equilibrium
condition. On the other hand, considerably lower temperature as low as 100 K is achieved
at the point of the maximum bubble radius when the bubble evolution was assumed to
be proceeded by the polytropic process with n ¼ 1:3. The calculated peak temperature at
the collapse point is about 9,300 K, which is close to the observed value of 10,000 K

Figure 4.
Calculated bubble centre
temperature for the
bubble shown in Figure 2

Figure 3.
Boundary layer thickness
vs time during the
collapse of bubble
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(Flannigan et al., 2006). However, the polytropic approximation considerably
underestimates the gas temperature of 2,600 K at the collapse point.

The gas pressure at the bubble centre vs time is shown in Figure 5. The pressure
changes suddenly when the bubble collapses. Such an abrupt increase and subsequent
decrease in the bubble wall pressure may produce an outgoing shock wave. The
calculated pressure at the collapse point is about 1,005 atm, which close to the observed
value of 1,090 atm (Flannigan et al., 2006). However, a considerable overestimation in
the gas pressure at the collapse point with the polytropic assumption is seen.

Figure 6 shows the time-dependent bubble wall velocity. Figure 6(a) shows this
velocity for present theory and Figure 6(b) shows it by polytropic assumption. The

Figure 6.
Calculated liquid velocity

at shock front for the
bubble shown in Figure 2

Figure 5.
Calculated bubble centre

pressure for the bubble
shown in Figure 2
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calculated magnitude of the minimum velocity at the collapse point is about 110 m/s
Figure 6(a), which is close to the observed value of 100 m/s. However, the magnitude of
the minimum velocity obtained by using polytropic relationship is about 460 m/s
Figure 6(b), which is much higher than the observed value.

Figure 7 depicts the calculated strength Figure 7(a) and liquid velocity Figure 7(b) of
the shock waves emitted upon bubble collapse at distance r ¼ 100 and 300mm from
bubble centre. The shock wave takes about 22.6ms to arrive at 0.1 mm from the bubble
centre and the magnitude of the shock wave strength at this point is about 37 atm,
while the value related to the polytropic approximation is about 92 atm which arrive
this point at 22.47ms. This means that the polytropic approximation overestimates the
magnitude of the shock wave strength at specific point from the bubble centre. Also,
Figure 7(b) shows the liquid velocity at the shock front. The polytropic approximation
overestimates the peak strength and the wave velocity.

The time histories of bubble radius obtained by present theory for gases with
different heat conductivity are shown in Figure 8. In all cases the initial radius (R�) is
13mm, the driving pressure frequency and amplitude are 28.5 kHz and 1.42 bars,
respectively. The result for three different heat conductivity of gases (KAir �
KArgon > KXenonÞ is compared. The trend of R(t) for all gases is similar. Air bubble
has the most discrepancy with the other fluids. At the first loop of oscillation, the
maximum bubble radius for air is larger than the others. While the second, the third,
and the forth loop are almost the same and the maximum bubble radius for xenon is
larger than the argon and air respectively.

The bubble radius around the first collapse is shown in Figure 9. Xenon bubble
collapse occurs earlier than the argon and air bubble. Minimum bubble radius for the
air is the smallest. Because of higher thermal conductivity of air, less temperature
gradient inside the bubble occurs for the air bubble as shown in Figure 10. The gas
temperature at the bubble wall and the average temperature becomes higher, so that
the pressure inside the bubble has a higher value correspondingly for the air bubble.

The strength of the shock wave for the mentioned gases is illustrated in Figure 11.
The shock wave strength for air bubble is the highest.

Figure 7.
The intensity of travelling
wave at a specific time
emitted upon bubble
collapse at distance
r ¼ 100 and 300mm from
bubble centre for the
bubble shown in Figure 2
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Figure 12 shows the bubble radius-time curves for an Argon bubble of R� ¼ 10mm
driven with an ultrasound frequency of 28.5 kHz and different amplitudes. The maximum
bubble radius increases by increasing the amplitude at the first loop. In the second, third,
and forth loop, the maximum bubble radius size is not affected by the amplitude.

Figure 9.
The calculated radius-

time curves near the
collapse point for the

bubble shown in Figure 8

Figure 8.
Theoretical radius-time

curves for bubbles
with different heat

conductivities and initial
radius of R� ¼ 13mm at

Pa ¼ 1:42 bar and
f ¼ 28:5 kHz
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The bubble centre temperature for Argon bubble is shown in Figure 13 as a function
of the initial bubble radius (R�) and ultrasound pressure amplitude (Pa). It is seen
that the bubble centre temperature increases with the acoustic amplitude, and
decreases as a function of R�. Figures 14 and 15 show that this behaviour is

Figure 11.
The strengths of shock
wave for the bubble
shown in Figure 8

Figure 10.
The temperature
distributions at the
collapse point for the
bubble shown in Figure 8
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qualitatively similar to the bubble centre pressure and maximum velocity at the bubble
wall respectively.

The strength of shock wave emitted upon bubble collapse for an initial bubble radius
R� ¼ 13mm and two acoustic amplitudes Pa ¼ 1:5 and Pa ¼ 2 bar is shown in Figure 16.

Figure 12.
Theoretical radius-time

curves of different
amplitude driven pressure

for Argon bubble of
R� ¼ 10mm and

f ¼ 28:5 kHz

Figure 13.
Bubble centre

temperature at collapse
point for Argon bubble
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Figure 14.
Bubble centre pressure
at collapse point for
Argon bubble

Figure 15.
Maximum velocity at
the bubble wall for
Argon bubble
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It is seen that for each pressure amplitude, the magnitude of the shock wave decreases
as 1/r and increases by pressure amplitude. As shown Figure 17 the magnitude of the
shock wave for bubble with small initial radius is higher than bubble with high initial
radius.

Figure 16.
The strengths of shock

wave for the Argon
bubble of different driven
pressure, R� ¼ 13mm and

f ¼ 28:5 kHz

Figure 17.
The strengths of shock

wave for the Argon
bubble of different initial
radius, Pa ¼ 1:42 bar and

f ¼ 28:5 kHz
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5. Conclusions
A mathematical model for a spherically symmetric gas bubble under ultrasound in
aqueous sulphuric acid solution is presented. This model accounts for gas and liquid
compressibility, gas heat transfer inside the bubble and liquid layer adjacent to the
bubble wall. A number of numerical simulations of bubble dynamics have been done
on the basis of this model and the following conclusions have been reached:

. Heat transfer inside the bubble as well as in the liquid layer adjacent to the
bubble wall is a very important factor, which affects the bubble motion and the
magnitude of shock wave.

. Polytropic approximation overestimates the peak pressure and underestimates
the peak temperature for an ultrasonic gas bubble.

. Polytropic approximation causes overestimation the strength and velocity of
shock wave.

. Less temperature gradient inside the bubble occurs for the gas with higher
thermal conductivity. However, the average temperature so that the pressure
inside the bubble and shock wave strength becomes higher.

. The maximum bubble radius increases with the amplitude of the acoustic field.

. The bubble centre temperature, pressure and maximum bubble wall velocity
increases with amplitude of the acoustic filed and decreases with initial bubble
radius.

. The strength of shock wave emitted upon bubble collapse increases with the
amplitude of driven pressure and decreases with the initial bubble radius.
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